Біохімічний синтез та пластичний обмін

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Реферат. Файл: Word (.doc) в архиве zip. Язык: Украинский. Категория: Биология
Адрес этого реферата http://referat.repetitor.ua/?essayId=11316 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 2 [Всего 2 записей]1 2 »

Сукупність реакцій біохімічного синтезу, в результаті яких із речовин, що потрапили до клітини, синтезуються необхідні для не сполуки, називають пластичним обміном. До основних процесів пластичного обміну належать біосинтез білків, вуглеводів, ліпідів, нуклеїнових кислот, а також фотосинтез і хемосинтез.

незамінні амінокислоти;

вищих тварин і людини надходять у кров з тонкого кишечнику після перетравлення білків харчових продуктів

Синтез кожної з двадцяти основних амінокислот - це складний багатоступеневий процес, який каталізують багато ферментів.

Генетичний код - властива всім живим організмам єдина система збереження спадкової інформації в молекулах нуклеїновим кислот у вигляді послідовності нуклеотидів. Ця послідовність визначає порядок введення амінокислотних залишків у поліпептидний ланцюг під час його синтезу.

Встановлено, що кожний амінокислотний залишок у поліпептидному ланцюзі кодується певною послідовністю з трьох нуклеотидів - триплетом.

Логічно це можна пояснити так. Якщо до складу білків входить двадцять основних амінокислот, то до складу нуклеїнових кислот - лише чотири типи нуклеотидів. Якби один амінокислотний залишок кодувався одним нуклеотидом, то до складу білків входило б усього чотири типи амінокислот. Комбінацією з двох нуклеотидів можна закодувати шістнадцять амінокислот (42 = 16), тоді як комбінація з трьох нуклеотидів дає змогу кодувати 64 типи амінокислот (43 = 64). тим більш 20 основних.

З'ясовано також, що генетичний код не перекривається, тобто генетична інформація може зчитуватися лише одним способом.

Між генами існують "розділові знаки" - ділянки, які не несуть генетичної інформації і лише відокремлюють одні гени від інших спейсерами (від англ. стгейс-простір).

У генетичному коді є три триплети (УАА, УАГ, УГА), кожен з яких означає припинення синтезу одного поліпептидного ланцюга (так звані стоп-кодони), а триплет АУГ визначає місце початку синтезу наступного.

Етапи біосинтезу білків.

Перший етап - транскрипція (від лат. транскрипціє - переписування) - синтез попередника ІРНК (про-іРНК), Спочатку фермент РНК-полімераза розщеплює подвійний ланцюг ДНК і на одному з ланцюгів за принципом комплементарності синтезує молекулу про-іРНК, яка таким чином повторює послідовність нуклеотидів певної ділянки молекули ДНК. Після цього за допомогою спеціальних ферментів про-іРНК перетворюється в активну форлгу ІРНК (з неї видаляються ділянки, позбавлені генетичної інформації), яка із ядра надходить до цитоплазми клітини.

Другий - трансляція (від лат. транслятіо - передача) - переклад послідовності нуклеотидів у молекулі ІРНК у послідовність амінокислотних залишків молекули білка. Розгляньмо цей процес детальніше. Насамперед у цитоплазмі кожна з 20 амінокислот за допомогою ковалентного зв'язку приєднується до певної тРНК, на що витрачається енергія, яка вивільнюється при розщепленні АТФ.

Потім ІРНК зв'язується з рибосомою, а згодом - із амінокислотним залишком, прикріпленим до певної тРНК. Транспортна РНК, Що переносить амінокислоту, за принципом комплементарності взаємодіє з особливим триплетом (кодонолг) ІРНК, який дає сигнал про початок синтезу поліпептидного ланцюга. Внаслідок цього процесу виникає ініціативний комплекс, який складається з триплету ІРНК, рибосоми та певної тРНК.

Далі поліпептидний ланцюг подовжується Кожна з амінокислот транспортується до рибосоми і розміщується на ланцюзі за допомогою певної тРНК, яка створює комплементарні пари з відповідним Їй триплетом в ІРНК (мал.ЗЗ).

. В одній частині функціонального центру антиикодон тРНК впізнає кодон ІРНК, а в іншій - амінокислота звільняєтьсяяється від тРНК. Коли рибосома просунеться по ІРНК, то на її надходить друга, яка теж починає просуватись по цій молекулі. надходить третя, четверта і так далі. кулу ІРНК з нанизаними на неї рибосомами називають полісомою(полірибосомою). Для здійснення процесу синтезу необхідні иві білки та енергія, яка вивільнюється при розщепленні АТФ. ли рибосома досягає стоп-кодону, синтез білкової молекули oшуеться, і рибосома разом з нею залишає ІРНК. Потім рибосо-гграпляє на будь-яку іншу молекулу ІРНК, а мвілекула білка -.оплазматичну сітку, по якій вона транспортується у певну ді-у клітини. На ІРНК з ЇЇ лівого кінця насуваються нові рибосо-біосинтез білкових молекул триває далі. ї останньому етапі білок набуває своєї природної структури, рюючи певну просторову конфігурацію. До чи після цього за гю ферментів відбувається відщеплення зайвих амінокислот-залишків, введення фосфатних, карбоксильних та інших груп, єднання вуглеводів тощо. Після цих процесів молекула білка стає кціонально активною.

Хемосинтезуючі організми (хелготрофи) для син-у органічних сполук використовують енергію, яка вивільнюєть-іід час перетворення неорганічних сполук. До цих організмів на-сать деякі групи бактерій: нітрифікуючі, безбарвні сіркобактерії, ізобактерії тощо.

Нітрифікуючі бактерії послідовно окиснюють аміак до нітритів (солі НМО^), а потім - до нітратів (солі НЗ^О^). Залізобактерії одержують енергію за рахунок окиснення сполук двовалент-о заліза до тривалентного. Вони беруть участь в утворенні покладів залізних руд. Безбарвні сіркобактерії окиснюють сірководень нші сполуки сірки до сірчаної кислоти (Н^80 ). Іроцес хемосинтезу відкрив у 1887 році видатний російський робіолог С.М.Виноградський. Хемосинтезуючі мікроорганізми ві-зають виняткову роль у процесах перетворення хімічних елемен-у біогеохімічних циклах. Біогеохімічні цикли (біогеохіміч-'л колообіг речовин) - це обмін речовинами та забезпечення оку енергії між різними компонентами біосфери, внаслідок жит-іяльності різноманітних організмів, що має циклічний характер. ^отосинтез. Фатотрофи використовують для синтезу органічних лук енергію світла. Процес утворення органічних сполук із неор-ічних завдяки перетворенню світлової енергії в енергію хімічних ізків називають фотосинтезом. До фототрофних організмів на-

oсать зелені рослини (вищі рослини, водорості), деякі тварини (рос-іні джгутикові), а також деякі прокаріоти - ціанобактерії, пурпу-і та зелені сіркобактерії.

Основними з фотосинтезуючих пігментів є хлорофіли. За своєю уктурою вони нагадують гем гемоглобіну, але в цих сполуках іість заліза присутній магній. Залізо потрібне рослинним орга-мам для забезпечення синтезу молекул хлорофілу (якщо в рос-іу залізо не надходить, то в неї утворюються безбарвні листки, датні до фотосинтезу).

Більшість фотосинтезуючих організмів має різні хлорофіли: хлорофіл а (обов'язковий}, хлорофіл Ь (у зелених рослин), хлорофіл с (у діатомових і бурих водоростей), хлорофіл а (у червоних водоростей). Зелені й пурпурові бактерії містять особливі бактеріохлорофіле.

В основі фотосинтезу лежить окиснювально-відновний процес, пов'язаний із перенесенням електронів від сполук постачальників електронів (донорів) до сполук, які їх сприймають (акцепторів), з утворенням вуглеводів і виділенням в атмосферу молекулярного кисню. Світлова енергія перетворюється на енергію синтезованих органічних сполук (вуглеводів) в особливих структурах -реакційних центрах, що містять хлорофіл а.

У процесі фотосинтезу у зелених рослин і ціанобактерій беруть участь дві фотосистелги - перша (І) та друга (II), які мають різні реакційні центри та пов'язані між собою через систему перенесення електронів.

Процес фотосинтезу відбувається в дві фази - світлову та темно-ву. У світлову фазу, реакції якої перебігають у мембранах особливих структур хлоропластів - тилакоїдів за наявності світла (мал.36), фотосинтезуючі пігменти вловлюють кванти світла (фотони). Поглинання фотонів приводить до "збудження" одного з електронів молекули хлорофілу, який за допомогою молекул - переносників електронів переміщується на зовнішню поверхню мембрани тилакоїдів, набуваючи певної потенційної енергії.

У фотосистемі І цей електрон може повертатись на свій енергетичний рівень і відновлювати її, а може передаватись такій сполуці, як НАДФ (нїкотинамідаденіндинуклеотидфосфат). Електрони, взаємодіючи з іонами водню, які є в навколишньому середовищі, відновлюють цю сполуку:Нагадаймо, що коли певна сполука віддає електрон - вона окис-нюеться, а коли приєднує - відновлюється. Відновлений НАДФ (НАДФ - Н) згодом постачає водень, потрібний для відновлення атмосферного СО^ до глюкози (тобто сполуки, в якій запасається енергія).

RSSСтраница 1 из 2 [Всего 2 записей]1 2 »





При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
bigmir)net TOP 100 Rambler's Top100